
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

Aug 2 2012

Administration

● Assignment 3 is up.

● Has two deadlines.

– Wed. Aug 8, Fri. Aug 10
● Will talk about it at the end of class.

● Final is Thurs. Aug 16, 7-10 in SF 3201

● Material will be covered next week.
● Office hours next week will be

● T2-4,F4-6.
● Exercise 4 will be optional.

● No time to release it that's not concurrent with the
assignment.

Aug 2 2012

Class Review

● Classes are user-made types.
● An instance of a class is called an object.

● A class has instance variables.
● These can have distinct values for each object of

the same class.

● A class also has class methods.
● These work the same way as other type methods.

Aug 2 2012

Class Review

● Object Oriented Programming supports
● Inheritance
● Polymorphism
● Encapsulation

Aug 2 2012

Class Naming Conventions

● Classes are named using CamelCase
● Not pothole_case.

● Objects are named using pothole_case.
● Class methods are named using pothole_case.
● Class variables are named using pothole_case.

Aug 2 2012

Classes variables vs. Instance variables

● Each class can have class variables.
● This is a variable that is associated with the class,

rather than any specific object.
● To create them, you use an assignment statement

as follows:
● ClassName.variable_name = value

● The variable can be evaluated with
● ClassName.variable_name

● x.variable_name if x is an instance of
ClassName.

Aug 2 2012

Class variables vs. Instance variables

● If you change the value of a class variable
using ClassName.variable_name, the value
changes for the ClassName objects.
● ClassName.variable_name = new_value

● If you change the value of a class variable
using x.variable_name, then it becomes an
instance variable for that particular object.
● x.variable_name = new_value

● The value of ClassName.variable_name does not
change, nor does the value of y.variable_name for
any other ClassName instance y.

Aug 2 2012

Class variables

● Class variables are generally used to denote
constants.
● Altering them via objects leads to complicated code.
● Essentially this results in a higher level of aliasing

problems.

Aug 2 2012

Inheritance

● ClassA can inherit the methods and variables
of ClassB by defining ClassB as follows:
● class ClassB(ClassA):

● We call ClassA the superclass and ClassB
the subclass.
● Every instance of ClassB is also an instance of

ClassA.
● Not every instance of ClassA is an instance of

ClassB.
● So the set of instances of ClassA is a superset of

the instances of ClassB.

Aug 2 2012

Inheritance

● We saw that if we have the same method name
in a subclass as in a superclass, and we call
subclass_instance.method(), then we
superclass' method is overwritten and we
evaluate the subclass' method.
● But sometimes we want to mostly reuse the

superclass method code, and only modify it a little.
● This comes up particularly commonly in

constructors, where if your subclass is only a small
change, you would not like to copy and paste the
code from the constructor of the superclass.

Aug 2 2012

Inheritance

● It would be really useful if we could call a
superclass method inside of a subclass.

● Two ways of doing this, if x is an instance of
SubClass.

● SuperClass.method_name(x, ...)
● x goes in place of self.
● No longer works in python 3.

● super(SubClass, x).method_name(...)
● super returns x's superclass object.
● self implicitly passed here.

Aug 2 2012

Inheritance

● Inheritance allows us to define new methods,
and overwrite already existing ones.

● But even when we overwrite existing ones, we
can still access them using super.

● super(SubClass, x) will return the
SuperClass object associated with x.
● Requires x to be an instance of SubClass.

● Recall that if x is an instance of a SubClass, it is
also an instance of the SuperClass.

Aug 2 2012

Break1

Aug 2 2012

Exceptions

● Python often generates errors.
● We can make our own functions, modules, types.

● We can also make our own errors, and
generate our own errors.

● Errors in Python are objects.
● All error are subclasses of Exception.
● This means we can define our own errors by

creating subclasses of Exception.

Aug 2 2012

MyError

● class MyError(Exception):

 pass

● We can create instances of MyError by using
MyError().

● But these don't stop the code in the same way
that python errors do.

● We can also create instances of python errors.
● TypeError(), NameError(), etc.
● Creating them in this way also doesn't stop the

code.

Aug 2 2012

Causing Code to crash

● Done using the keyword raise

● raise TypeError() will cause the code to
crash with a TypeError.

● raise MyError() will cause the code to
crash with a MyError.

● Passing the constructor a string will cause it to
crash with that error massage.

Aug 2 2012

Why do we want code to crash?

● It can be one way of enforcing sanity checks.
● For example if you know that some list needs 10

elements, you can check the length and crash if the
length is wrong.

● Sometimes the program might run a very long time
before an early error actually breaks the program.
– The longer it runs, the harder the error is to source.

● Mostly crashing is undesirable.

Aug 2 2012

Avoiding Crashes.

● Avoiding crashes in python involves two
keywords:

try:

 block1

except:

 block2

● Block1 is executed until an exception is raised.
Then block2 is executed.

● If no exection is raised, block2 is not executed.

Aug 2 2012

Not catching some execeptions

● Often you only want to catch some exceptions.
● It's common to design code to produce a specific

kind of exception.
– It's a common way to enforce parameter requirements.

● But code may also have unplanned errors.
– It is desirable for the code to crash in this case to indicate

that something is wrong.

● except SpecificException:
● This only catches instances of SpecificException or

its subclasses.

Aug 2 2012

Getting information from Exceptions

● As exceptions are objects, it is often useful to
give them instance variables.
● In particular, the things that actually went wrong

should be added to the exception.

● For this to be useful, we need to be able to
access the exception that was raised.

● except MyError e:
● This creates a local variable e that refers to the

instance of MyError that was raised.
● This local variable can then be used in the

exception block.

Aug 2 2012

Break2

Aug 2 2012

Assignment 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

